CS 188: Atrtificial Intelligence
Spring 2010

Lecture 18: Bayes Nets V
3/30/2010

Pieter Abbeel — UC Berkeley

Many slides over this course adapted from Dan Klein, Stuart Russell,
Andrew Moore

Announcements

= Midterms
= In glookup

= Assignments
= W5 due Thursday
= W6 going out Thursday

= Midterm course evaluations in your email soon

Outline

Bayes’ Net Semantics

= Bayes net refresher:
= Representation
= Inference
= Enumeration
= Variable elimination

~ = Approximate inference through sampling
= Value of information

= A set of nodes, one per variable X
= Adirected, acyclic graph

= A conditional distribution for each node

= A collection of distributions over X, one for
each combination of parents’ values

P(X|ay...an)

CPT: conditional probability table {M

1{!@- Description of a noisy “causal” process

A Bayes net = Topology (graph) + Local Conditional Probabilities .

Probabilities in BNs

Inference by Enumeration

= For all joint distributions, we have (chain rule):
n

P(z1,22,...a0) = [[P(zilz1,...,2-1) <—
= T

= Bayes’ nets implicitly encode joint distributions

= As a product of local conditional distributions

= To see what probability a BN gives to a full assignment, multiply
all the relevant conditionals together:

n
P(z1,20,...an) = [P(xi|parents(X;))
i=1 | C—

= This lets us reconstruct any entry of the full joint
= Not every BN can represent every joint distribution 4_
= The topology enforces certain conditional independencies 5

= Given unlimited time, inference in BNs is easl
= Recipe: Qe [Xo7ro oz
= =T Yt o
= State the marginal probabilities you need -
= Figure out ALL the atomic probabilities yot* neec‘f' ko)
= Calculate and combine them

= Building the full joint table takes time and
space exponential in the number of
variables

@

General Variable Elimination
= Query: P(Q|E1 =e1,...E, =¢p) & P

= Start with initial factors:
= Local CPTs (but instantiated by evidence)

= While there are still hidden variables (not Q or evidence):
= Pick a hidden variable H
= Join all factors mentioning H
= Eliminate (sum out) H

= Join all remaining factors and normalize

= Complexity is exponential in the number of variables
appearing in the factors---can depend on qrdering but 4
even best ordering is often impractical

Approximate Inference

= Basic idea:

—== Draw N samples from a sampling distribution S

—= Compute an approximate posterior probability
= Show this converges to the true probability P

= Why sample?
= Learning: get samples from a distribution you don’t know

~ " Inference: getting a sample is faster than computing the right
answer (e.g. with variable elimination)

© Wik protabilly 1-5 wedor: [3ag)sg Y ¥ Xety
Prior Sampling -~ 4"

Prior Sampling

= This process generates samples with probability:

n
Sps(a...on) = [[PlailParents(X;)) = Pe1 ...an)

=1
...i.e.the BN’s join% probability

= Let the number of samples of an event be Npg(zy...xn)

&

= Then lim P(xy,...,zn) = lim Npg(a1,...,2n)/N,
1_\/*}00 IN—00

= Sps(@1,-.-,2n)
= P(a1...2n)
= l.e., the sampling procedure is consistent

sakafus
P(C) ® L 6t
A e
CERH fugne el
L =]
P(s|C) P(R|C)
~ =5 e L
| +s |05 -c | +r |02
-s 105 -r 108
P(W|S, R) sampls
ples:
+s | +r [tw [099
-w 0.01 +C, -S, +I, +W
o | +w [090 G, +S, T, +W
@ -w_|0.10
— 6 +w_| 0.90 L.
-w_|0.10 —tw) T 7
r ::lv 0.01 Cash‘v\"“" p(V-W) 111
w099
Example

= We'll get a bunch of samples from the BN:
£C, =S, 41, +W —]
+C, 48, +I, +W —
-C, +S, +I, “W g—
+C, -8, +I, +W —
-C, -S, T, +W —
= If we want to know P(\Y)
* We have counts <+w:4, -w:1>
= Normalize to get P(VT); <+w:0.8, -w:0.2>
= This will get closer to the true distribution with more samples
= Can estimate anything else, too J
~—=> = What about P(C| +w)7 P(C| +r, +w)? P(C|-r, -w)?
~~ = Fast: can usé @C\fé'r\g‘é‘tﬁp%es if less tin%m@(&vvs“%cﬁji
13

P(rc\4w) I

Rejection Sampling

- = Let's say we want P(C)
= No point keeping all samples around
= Just tally counts of C as we go

» Let’s say we want P(C +sD '

= Same thing: tally C outcomes, but
ignore (reject) samples which don't <*

¢

have S=+s @“.)

= This is called rejection sampling FOLINIT, W
i . - [+c,;s, +, W

= ltis also consistent for conditional -C, +8, +I, W,
probabilities (i.e., correct in the limit) +¢.@+r. +w)
-c, B30 -, +V\)1

(3

~ o
Likelihood Weighting <}

= Problem with rejection sampling: z
= If evidence is unlikely, you reject a lot of samples
= You don’t exploit your evidence as you sample
= Consider P(B|+a)

Burglary @

= |dea: fix evidence variables and sample the rest 50 8 S

A\)
-b, +a gt -5,

-b, +a|fl -4,

! +b, +a |l +,

= Problem: sample distribution not consistent!
= Solution: weight by probability of evidence given parenits *

Likelihood Weighting

P(S|C)
+c | +s |0.18—
-s |09
-c | +s |05
-s |05

PW|S,R) §

@ @ [+w [0999

-w_|0.01

-r +w | 0.90

-w_| 0.10

-s +r +w_| 0.90

-w_|0.10

-r +w | 0.01

-w | 0.99

l", +u)
<

P(R|C)
4+c | +r |08
-r 102
-c [+r |02
-r |08

Samples:

+C, +8, +I, +W

w=1.0x0.1x0.99

Likelihood Weighting

= Sampling distribution if z sampled and e fixed evidence

1
Sws(z,e) = [P(z|Parents(Z;))

i=1 c
—
= Now, samples have weights G

m
w(z,e) = [] P(e;|Parents(E;))
=1

= Together, weighted sampling distribution is consistent

LSws(z, e)-w(z,e) = HP(zﬂParents(zi)) H P(e;|Parents(e;))

i=1 i=1
G(zlf)= P(z,e) 18

Likelihood Weighting

= Likelihood weighting is good
= We have taken evidence into account as_

we generate the sampla
= E.g. here, W’s value will get picked

based on the evidence values of S, R)
= More of our samples will reflect the state

of the world suggested by the evidence

Likelihood weighting doesn’t solve

all our problems

Markov Chain Monte Carlo*

= |dea: instead of sampling from scratch, create samples
that are each like the last one.

= Procedure: resample one variable at a time, conditioned
on all the rest, but keep evidence fixed. E.g., for P(b|c):

3 Ve
@D D @O

= Properties: Now samplq%%i@(got independent (iﬂ(fal:’t"‘
they're nearly identical), but sample averages are still
consistent estimators!

= What's the point. both upstream and downstream

variables condition on evidence. »

= Evidence influences the choice of =
downstream variables, but not upstream
ones (C isn't more likely to get a value
matching the evidence)
= We would like to consider evidence
when we sample every variable ®
rs
—
-+ A
L AJ‘L,M s 13 b
[l]/ﬁ
6 e . \’Jw
|~ [:]\lumv\a-/‘hl"\
'/ N ’J -Q().u-wh-\l'uk —_ SM Aobeck *
— VarniaHe hl’\,‘s\\"\r
(O
Mg%- N yth
A(,\l&\zk
MLL‘LM‘L wuﬂ) <

r\(r‘\c‘ ((}J;L: g.q,.pl.\s
«U
\IWL-\D'\& W\Lu‘*’\s 13

23

Decision Networks

= MEU: choose the action which

maximizes the expected utility Umbrella

given the evidence po
= Can directly operationalize this 0

with decision networks

= Bayes nets with nodes for
utility and actions

= Lets us calculate the expected
utility for each action

New node types:

= Chance nodes (just like BNs)

= Actions (rectangles, cannot @
have parents, act as observed
evidence)

= Utility node (diamond, depends
on action and chance nodes)

24

Example: Decision Networks

Umbrella = leave
Umbrella

EU(leave) = Z P(w)U (leave, w)

=0.7-1004+0.3-0=70 o
v Lo
Umbrella = take @

EU(take) = Z P(w)U(take, w)
/—71 A W [UAW)

=0.7-204+0.3-70 =35

+ W [Py] [Teave | sun 10g
sun 0.7 leave rain 0
0.3

take sun 20

Optimal decision = leave

MEU(6) = max EU(a) = 7 fake | rain 70'1

Decision Networks

= Action selection:

Inséantiate all /
evidence
Set action node(s) 0
each possible way
Calculate posterior
for all parents of | @
utility node, given |-,
the evidence
Ca}lcu}ate ex;ﬁected
utility for each action
Choose maximizing
action

e |

25

Evidence in Decision Networks

Umbrella = Find P(W|F=bad)
= Select for evidence

N I <> =
— sun 0.7 sun 07 sun 02
ain 03 an [o o5
P(W) P(bad|W')
F P(F . .
p ¢ ‘Sﬁ = First we join P(W) and
A P(badW)
F] P | = Then we normalize
bad 0.9 sun : 0.14 l> sun 034

rain 027 rain 66

L
~ P(W, bad W|F = bad)

Example: Decision Networks

Umbrell 4 P(W/|F=bad)
Umbrella = leave morefia sun 0.34
EU(leave|bad) = Z P(w|bad)U (leave, w) rain 066

=0.34-100 +0.66 - 0 = 34
- -

Umbrella = take

U(AW)
EU(take[bad) = Z P(w[bad)U (take, w) 100
w o
=034-2040.66-70 = 53 e Toon m
take | rain 70
Optimal decisio
MEU(F = bad) = maxEU(a|bad) = 53 -

