

Announcements

- Midterms
- In glookup
- Assignments
- W5 due Thursday
- W6 going out Thursday
- Midterm course evaluations in your email soon

Bayes' Net Semantics

- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
- A collection of distributions over X, one for each combination of parents' values

$$
P\left(X \mid a_{1} \ldots a_{n}\right)
$$

- CPT: conditional probability table oftre Description of a noisy "causal" process

A Bayes net $=$ Topology (graph) + Local Conditional Probabilities

Probabilities in BNs

- For all joint distributions, we have (chain rule):

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P(x_{i} \mid \underbrace{x_{1}, \ldots, x_{i-1}}) \quad
$$

- Bayes' nets implicitly encode joint distributions
- As a product of local conditional distributions
- To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P(x_{i} \mid \underbrace{\operatorname{parents}\left(X_{i}\right)})
$$

- This lets us reconstruct any entry of the full joint
- Not every BN can represent every joint distribution a
- The topology enforces certain conditional independencies - 5

Inference by Enumeration

- Given unlimited time, inference in BNs is easy
- Recipe:
- State the marginal probabilities you need $=P\left(x_{5}=+k_{5}, x_{1}=+4\right)_{k}=+x_{4}$
- Figure out ALL the atomic probabilities yoừ need
- Calculate and combine them
- Building the full joint table takes time and space exponential in the number of variables
α

7

General Variable Elimination

- Query: $P\left(Q \mid E_{1}=e_{1}, \ldots E_{k}=e_{k}\right) \approx$ ob
- Start with initial factors:
- Local CPTs (but instantiated by evidence)
" While there are still hidden variables (not Q or evidence):
- Pick a hidden variable H
- Join all factors mentioning H
- Eliminate (sum out) H
- Join all remaining factors and normalize
- Complexity is exponential in the number of variables appearing in the factors---can depend on ordering but 8 even best ordering is often impractical

Approximate Inference

- Basic idea:
\rightarrow Draw N samples from a sampling distribution S
\rightarrow Compute an approximate posterior probability
- Show this converges to the true probability P
- Why sample?
- Learning: get samples from a distribution you don't know
\rangle_{0} - Inference: getting a sample is faster than computing the right answer (e.g. with variable elimination)

Example

- We'll get a bunch of samples from the BN:
$\left\{\begin{array}{l} \pm c,-s,+r,+w-] \\ \pm c,+s,+r,+w- \\ -c,+s,+r,-w< \\ +c,-s,+r,+w-] \\ -c,-s,-r,+w-]\end{array}\right.$

- If we want to know $\mathrm{P}(\underline{W})$
- We have counts <+w:4, -w:1>
- Normalize to get $\mathrm{P}(\overline{\mathrm{W})}=\overline{<+\mathrm{w}}: 0.8,-\mathrm{w}: 0.2>$
- This will get closer to the true distribution with more samples
- Can estimate anything else, too
\longrightarrow : What about $P(C \mid+w)$? $P(C \mid+r,+w)$? $P(C \mid-r,-w)$?
~s - Fast: can used BWerl sumiples if less time (what's the (arawbadck ck $P(7 C 1+w)=\frac{1}{5}$

Prior Sampling

- This process generates samples with probability:

$$
S_{P S}\left(x_{1} \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)=P\left(x_{1} \ldots x_{n}\right)
$$

...i.e. the BN's joint probability

- Let the number of samples of an event be $N_{P S}\left(x_{1} \ldots x_{n}\right)$
- Then $\lim _{N \rightarrow \infty} \hat{P}\left(x_{1}, \ldots, x_{n}\right)=\lim _{N \rightarrow \infty} N_{P S}\left(x_{1}, \ldots, x_{n}\right) / N$

$$
=S_{P S}\left(x_{1}, \ldots, x_{n}\right)
$$

$$
=P\left(x_{1} \ldots x_{n}\right)
$$

- I.e., the sampling procedure is consistent

Rejection Sampling

\sim - Let's say we want $\mathrm{P}(\mathrm{C})$

- No point keeping all samples around
- Just tally counts of C as we go
- Let's say we want $\mathrm{P}(\underline{\mathrm{C}}+\underset{+ \text { S }}{ })$
- Same thing: tally C outcomes, but ignore (reject) samples which don't have $S=+S$
- This is called rejection sampling
- It is also consistent for conditional probabilities (i.e., correct in the limit)

Likelihood Weighting

- Sampling distribution if z sampled and e fixed evidence

$$
S_{W S}(\mathbf{z}, \mathbf{e})=\prod_{i=1}^{l} P\left(z_{i} \mid \operatorname{Parents}\left(Z_{i}\right)\right)
$$

- Now, samples have weights

$$
w(\mathbf{z}, \mathbf{e})=\prod_{i=1}^{m} \underbrace{P\left(e_{i} \mid \text { Parents }\left(E_{i}\right)\right)}
$$

- Together, weighted sampling distribution is consistent
${ }^{6} S_{\mathrm{WS}}(z, e) \cdot w(z, e)=\prod_{i=1}^{l} P\left(z_{i} \mid \operatorname{Parents}\left(z_{i}\right)\right) \prod_{i=1}^{m} P\left(e_{i} \mid \operatorname{Parents}\left(e_{i}\right)\right)$

$$
\rho(z, e)=P(\mathrm{z}, \mathrm{e})
$$

Likelihood Weighting

- Likelihood weighting is good
- We have taken evidence into account as we generate the sample
- E.g. here, W's value will get picked based on the evidence values of S, R
- More of our samples will reflect the state of the world suggested by the evidence
- Likelihood weighting doesn't solve all our problems

- Evidence influences the choice of downstream variables, but not upstream ones (C isn't more likely to get a value matching the evidence)
- We would like to consider evidence when we sample every variable

Example: Decision Networks

Evidence in Decision Networks

Example: Decision Networks

$$
\operatorname{MEU}(F=\mathrm{bad})=\max _{a} \mathrm{EU}(a \mid \mathrm{bad})=53
$$

